Lithium cation conducting TDI anion-based ionic liquids.

نویسندگان

  • Leszek Niedzicki
  • Ewelina Karpierz
  • Maciej Zawadzki
  • Maciej Dranka
  • Marta Kasprzyk
  • Aldona Zalewska
  • Marek Marcinek
  • Janusz Zachara
  • Urszula Domańska
  • Władysław Wieczorek
چکیده

In this paper we present the synthesis route and electrochemical properties of new class of ionic liquids (ILs) obtained from lithium derivate TDI (4,5-dicyano-2-(trifluoromethyl)imidazolium) anion. ILs synthesized by us were EMImTDI, PMImTDI and BMImTDI, i.e. TDI anion with 1-alkyl-3-methylimidazolium cations, where alkyl meant ethyl, propyl and butyl groups. TDI anion contains fewer fluorine atoms than LiPF6 and thanks to C-F instead of P-F bond, they are less prone to emit fluorine or hydrogen fluoride due to the rise in temperature. Use of IL results in non-flammability, which is making such electrolyte even safer for both application and environment. The thermal stability of synthesized compounds was tested by DSC and TGA and no signal of decomposition was observed up to 250 °C. The LiTDI salt was added to ILs to form complete electrolytes. The structures of tailored ILs with lithium salt were confirmed by X-ray diffraction patterns. The electrolytes showed excellent properties regarding their ionic conductivity (over 3 mS cm(-1) at room temperature after lithium salt addition), lithium cation transference number (over 0.1), low viscosity and broad electrochemical stability window. The ionic conductivity and viscosity measurements of pure ILs are reported for reference.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of cation structure on the oxygen solubility and diffusivity in a range of bis{(trifluoromethyl)sulfonyl}imide anion based ionic liquids for lithium-air battery electrolytes.

This paper reports on the solubility and diffusivity of dissolved oxygen in a series of ionic liquids (ILs) based on the bis{(trifluoromethyl)sulfonyl}imide anion with a range of related alkyl and ether functionalised cyclic alkylammonium cations. Cyclic voltammetry has been used to observe the reduction of oxygen in ILs at a microdisk electrode and chronoamperometric measurements have then bee...

متن کامل

Ternary mixtures of ionic liquids for better salt solubility, conductivity and cation transference number improvement

We hereby present the new class of ionic liquid systems in which lithium salt is introduced into the solution as a lithium cation-glyme solvate. This modification leads to the reorganisation of solution structure, which entails release of free mobile lithium cation solvate and hence leads to the significant enhancement of ionic conductivity and lithium cation transference numbers. This new appr...

متن کامل

Lithium coordination in protic ionic liquids.

The lithium ion-ion interactions in protic ionic liquids can be very different compared to those in aprotic ionic liquids. In this study we show that, for equal lithium ion concentration, the lithium coordination number in protic ionic liquids is lower than that in aprotic ones. This lower coordination makes lithium ions more "free" to move in protic ionic liquids and it might have an important...

متن کامل

The effect of lithium salt doping on the nanostructure of ionic liquids.

In this work we report on the evolution of the structure of two model ionic liquid families, N-alkyl-N-methylpyrrolidinium (Pyr1n-TFSI) and 1-alkyl-3-methylimidazolium (CnMIm-TFSI) (n = 3, 4, 6 and 8) both containing the bis(trifluoromethanesulfonyl)imide (TFSI) anion, upon the addition of LiTFSI using small angle X-ray scattering (SAXS). The introduction of a lithium salt (Li-salt) tunes the i...

متن کامل

A combined theoretical and experimental study of the influence of different anion ratios on lithium ion dynamics in ionic liquids.

In this paper, we investigate via experimental and simulation techniques the transport properties, in terms of total ionic conductivity and ion diffusion coefficients, of ionic liquids doped with lithium salts. They are composed of two anions, bis(fluorosulfonyl)imide (FSI) and bis(trifluoromethanesulfonyl)imide (TFSI), and two cations, N-ethyl-N-methylimidazolium (emim) and lithium ions. The c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 23  شماره 

صفحات  -

تاریخ انتشار 2014